Explosive percolation: a numerical analysis.
نویسندگان
چکیده
Percolation is one of the most studied processes in statistical physics. A recent paper by Achlioptas [Science 323, 1453 (2009)] showed that the percolation transition, which is usually continuous, becomes discontinuous ("explosive") if links are added to the system according to special cooperative rules (Achlioptas processes). In this paper, we present a detailed numerical analysis of Achlioptas processes with product rule on various systems, including lattices, random networks á la Erdös-Rényi, and scale-free networks. In all cases, we recover the explosive transition by Achlioptas However, the explosive percolation transition is kind of hybrid as, despite the discontinuity of the order parameter at the threshold, one observes traces of analytical behavior such as power-law distributions of cluster sizes. In particular, for scale-free networks with degree exponent lambda<3 , all relevant percolation variables display power-law scaling, just as in continuous second-order phase transitions.
منابع مشابه
Explosive percolation in graphs
Percolation is perhaps the simplest example of a process exhibiting a phase transition and one of the most studied phenomena in statistical physics. The percolation transition is continuous if sites/bonds are occupied independently with the same probability. However, alternative rules for the occupation of sites/bonds might affect the order of the transition. A recent set of rules proposed by A...
متن کاملTransmission of packets on a hierarchical network: Statistics and explosive percolation
We analyze an idealized model for the transmission or flow of particles, or discrete packets of information, in a weight bearing branching hierarchical two dimensional network and its variants. The capacities add hierarchically down the clusters. Each node can accommodate a limited number of packets, depending on its capacity, and the packets hop from node to node, following the links between t...
متن کاملImpact of single links in competitive percolation
How a complex network is connected crucially impacts its dynamics and function. Percolation, the transition to extensive connectedness on gradual addition of links, was long believed to be continuous, but recent numerical evidence of ‘explosive percolation’ suggests that it might also be discontinuous if links compete for addition. Here we analyse the microscopic mechanisms underlying discontin...
متن کاملExplosive phase transitions in percolation processes
Percolation processes are well studied in physics. In theoretical physics, directed percolation (DP) is a representative of a well-known universality class of continuous phase transitions [1]. DP has been used to model a variety of phenomena including turbulence, liquids percolating through porous media, epidemics and forest fires [2]. In the Erdös-Rényi model, it is known that the order parame...
متن کاملExplosive Percolation on Directed Networks Due to Monotonic Flow of Activity
An important class of real-world networks has directed edges, and in addition, some rank ordering on the nodes, for instance the popularity of users in online social networks. Yet, nearly all research related to explosive percolation has been restricted to undirected networks. Furthermore, information on such rank-ordered networks typically flows from higher-ranked to lower-ranked individuals, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 81 3 Pt 2 شماره
صفحات -
تاریخ انتشار 2010